Coordination variability around the walk to run transition during human locomotion.
نویسندگان
چکیده
Increases in movement variability have previously been observed to be a hallmark property of coordination changes between coupled oscillators that occur as movement frequency is scaled. Prior research on the walk-run transition in human locomotion has also demonstrated increases in variability around the transition region, supporting predictions of nonequilibrium phase transitions (Diedrich & Warren, 1995). The current study examined the coordinative patterns of both intra- and inter-limb couplings around the walk-run transition using two different temporal manipulations of locomotor velocity as a control parameter in healthy young participants (N = 11). Coordination variability did not increase before the transition. The nature of the change in continuous relative phase variability between gait modes was coupling-specific, and varying the time spent at each velocity did not have an overall effect on gait transition dynamics. Lower extremity inter-limb coordination dynamics were more sensitive to changes in treadmill velocity than intra-limb coordination. The results demonstrate the complexity of segmental coordination change in human locomotion, and question the applicability of dynamical bimanual coordination models to human gait transitions.
منابع مشابه
When does a gait transition occur during human locomotion?
When a treadmill accelerates continuously, the walk-run transition has generally been assumed to occur at the instant when a flight phase is first observed, while the run-walk transition has been assumed to occur at the instant of the first double support period. There is no theoretical or empirical evidence to suggest that gait transitions occur at the instant of these events, nor even whether...
متن کاملThe relationship between joint kinetic factors and the walk-run gait transition speed during human locomotion.
The primary purpose of this project was to examine whether lower extremity joint kinetic factors are related to the walk-run gait transition during human locomotion. Following determination of the preferred transition speed (PTS), each of the 16 subjects walked down a 25-m runway, and over a floor-mounted force platform at five speeds (70, 80, 90, 100, and 110% of the PTS), and ran over the for...
متن کاملVaulting mechanics successfully predict decrease in walk–run transition speed with incline
There is an ongoing debate about the reasons underlying gait transition in terrestrial locomotion. In bipedal locomotion, the 'compass gait', a reductionist model of inverted pendulum walking, predicts the boundaries of speed and step length within which walking is feasible. The stance of the compass gait is energetically optimal-at walking speeds-owing to the absence of leg compression/extensi...
متن کاملThe Apollo Number: Space Suits, Self-Support, and the Walk-Run Transition
BACKGROUND How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g), running, unlike on Earth, uses less energy per distance than walking. METHODOLOGY/PRINCIPAL FINDINGS The walk-run transition (denoted *) correlates with the Froude...
متن کاملNeuromuscular effort predicts walk-run transition speed in normal and adapted human gaits.
Often, humans and other animals move in a manner that minimizes energy costs. It is more economical to walk at slow speeds, and to run at fast speeds. Here, we asked whether humans select a gait that minimizes neuromuscular effort under novel and unfamiliar conditions, by imposing interlimb asymmetry during split-belt treadmill locomotion. The walk-run transition speed changed markedly across d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Motor control
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2006